django-storages-s3upload
Documentation
Release 0.1.6

Matt Austin

September 21, 2014

Contents

1 Quick Start 3
2 Contents 5
2.1 Changelog e 5
22 APL . 6
Python Module Index 11

django-storages-s3upload Documentation, Release 0.1.6

django-storages-s3upload provides forms and views for direct HTTP post to S3. It is an addition for the Amazon S3
boto storage backend provided by django-storages.

Please be VERY careful with security considerations, and check you know exactly what is happening. S3 HTTP POST
upload will overwrite existing files if the key matches. You will want to limit uploads to trusted users, and use unique
key prefixes. You will want to make sure that any processing of uploaded files is safe.

See also: https://docs.djangoproject.com/en/dev/topics/security/#user-uploaded-content
The goals of this Django app are to:
¢ Create signed forms for posting files directly in to Amazon S3 buckets.
* Provide views so that it is possible to process files which have been successfully uploaded.

* Provide an extended form class which uses dropzone.js for handling multiple uploads with thumbnails and
progress bars.

Contents 1

https://docs.djangoproject.com/en/dev/topics/security/#user-uploaded-content

django-storages-s3upload Documentation, Release 0.1.6

2 Contents

CHAPTER 1

Quick Start

If you already have an Amazon S3 Boto backend configured as your project’s DEFAULT_FILE_STORAGE, then it’s
easy to get an example going by extending S3UploadFormView or DropzoneS3UploadFormvView:

class MyFormView (DropzoneS3UploadFormView) :

upload_to = "test-uploads/’

django-storages-s3upload Documentation, Release 0.1.6

4 Chapter 1. Quick Start

CHAPTER 2

Contents

2.1 Change log

2.1.1 0.1.6

¢ New methods get_validate_upload_form_class and get_validate_upload_form_kwargs
on S3UploadFormView, to make the validation form easier to extend/override. Thanks Josh Crompton.

2.1.2 0.1.5

* Pass-through (the upload/redirect) and validate CSRF token when processing uploads.
* Prevent Dropzone ‘success’ styling until processing has also finished.

* A custom processed_key_generator can be passed to ValidateS3UploadForm instances.

2.1.3 0.1.4

* ValidateS3UploadForm now renames/relocates files during the processing of uploads.
* Support for setting Cache-Control header.

* Ensure other http header data is retained when updating key metadata.

2.1.4 0.1.3

* Ensure use of UTC when constructing expiration time for policy.

* Fixed bug when generating the form action url if the storage location was empty.

2.1.5 0.1.2

* Fix for typo in settigs.

* Better file handling.

django-storages-s3upload Documentation, Release 0.1.6

2.1.6 0.1.1

* Added missing python-magic to setup.

* Fixed import typo in sphinx configuration.

2.1.7 0.1.0

* Initial alpha/development release.

2.2 API

Contents:

2.2.1 Forms

S3UploadForm

class s3upload. forms.S3UploadForm (success_action_redirect=None, **kwargs)
Bases: s3upload.forms.ContentTypePrefixMixin, s3upload.forms.KeyPrefixMixin,
s3upload. forms.StorageMixin, django.forms.forms.Form

Form for uploading a file directly to an S3 bucket.

__init__ (success_action_redirect=None, **kwargs)

_base64_encode (string)

add_prefix (field_name)

base_fields = OrderedDict([(‘access_key’, <django.forms.fields.CharField object at 0x7f937b558110>), (‘acl’, <djangc
declared_fields = OrderedDict([(‘access_key’, <django.forms.fields.CharField object at 0x7f937b558110>), (‘acl’, <c
expiration_timedelta = datetime.timedelta(0, 1800)

field name_overrides = {u’access_key’: w’AWSAccessKeyld’, u’cache_control’: u’Cache-Control’, u’content_type’
get_access_key ()

get_acl ()
Return the acl to be set on the uploaded file.

By default this sets a ‘private’ acl, and should probably be kept that way. You can set the final acl when
the upload is validated/processed.

get_action()

get_cache_control ()
get_conditions ()
get_connection ()
get_expiration_time (refresh=False)
get_key ()

get_policy ()

6 Chapter 2. Contents

django-storages-s3upload Documentation, Release 0.1.6

get_secret_key ()

get_signature ()
get_success_action_redirect ()
get_success_action_status_code ()
media

success_action_status_code =204

DropzoneS3UploadForm

class s3upload. forms.DropzoneS3UploadForm (success_action_redirect=None, **kwargs)
Bases: s3upload.forms.S3UploadForm
Form for uploading a file directly to an S3 bucket using dropzone.js.
__init__ (success_action_redirect=None, **kwargs)

class Media
Bases: object

css = {v’all’: [u’s3upload/css/dropzone.css’]}

js = [u’s3upload/dropzone.js’, u’s3upload/dropzone-options.js’]
DropzoneS3UploadForm.base_fields = OrderedDict([(‘access_key’, <django.forms.fields.CharField object at 0x7
DropzoneS3UploadForm.declared_fields = OrderedDict([(‘access_key’, <django.forms.fields.CharField object a
DropzoneS3UploadForm.media

DropzoneS3UploadForm.success_action_status_code =201

ValidateS3UploadForm

class s3upload. forms.ValidateS3UploadForm (process_to=None, pro-

cessed_key_generator=None, **kwargs)
Bases: s3upload.forms.ContentTypePrefixMixin, s3upload.forms.KeyPrefixMixin,

s3upload. forms.StorageMixin, django.forms.forms.Form

Form used to validate returned data from S3.

Not for use in templates - we’re only processing/validating the provided data.
__init__ (process_to=None, processed_key_generator=None, **kwargs)

static _generate_processed_key_name (process_to, upload_name)
Returns a key name to use after processing based on timestamp and upload key name.

base_fields = OrderedDict([(‘bucket_name’, <django.forms.fields.CharField object at 0x7f937b558950>), (‘etag’, <dj:
clean ()

clean bucket_name ()
Validates that the bucket name in the provided data matches the bucket name from the storage backend.

clean_key_ name ()
Validates that the key in the provided data starts with the required prefix, and that it exists in the bucket.

declared_fields = OrderedDict([(‘bucket_name’, <django.forms.fields.CharField object at 0x7f937b558950>), (‘etag

2.2. API 7

django-storages-s3upload Documentation, Release 0.1.6

get_processed_acl ()
Return the acl to be set on the processed file.

get_processed_key_ name ()
Return the full path to use for the processed file.

get_processed_path ()
Returns the processed file path from the storage backend.

Returns File path from the storage backend.
Return type unicode

get_upload_content_type ()
Determine the actual content type of the upload.

get_upload key ()
Get the Key from the S3 bucket for the uploaded file.

Returns Key (object) of the uploaded file.
Return type boto.s3.key.Key

get_upload_key_ metadata ()
Generate metadata dictionary from a bucket key.

get_upload_path()
Returns the uploaded file path from the storage backend.

Returns File path from the storage backend.
Return type unicode

media

process_to = u’processed/’

process_upload (set_content_type=True)
Process the uploaded file.

2.2.2 Views

S3UploadFormView

class s3upload.views.S3UploadFormView (**kwargs)
Bases: django.views.generic.edit.FormMixin,django.views.generic.base.TemplateResponseMix]
django.views.generic.base.View

_get_bucket_name ()
_get_etag()
_get_key_name ()
content_type_prefix=u’‘

form class
alias of S3UploadForm

form invalid (form)
form_valid (form, *args, **kwargs)

get (*args, **kwargs)

8 Chapter 2. Contents

django-storages-s3upload Documentation, Release 0.1.6

get_content_type_ prefix()
get_form_kwargs (*args, **kwargs)
get_process_to ()
get_processed_key_generator ()
get_storage ()
get_success_action_redirect ()
get_upload to()

get_validate_upload_form()
Return an instance of the form to use to validate the upload.

get_validate_upload form class()
Return the class of the form to use to validate the upload.

get_validate_upload_form_ kwargs ()
Return the keyword arguments for instantiating the form for validating the upload.

post (*args, **kwargs)

process_to = None

processed_key generator = None

set_content_type = True

storage = <django.core.files.storage.DefaultStorage object at 0x7f937b54¢990>
template_name = u’s3upload/form.html’

upload_to = None

validate_upload()

validate_upload form_ class
alias of ValidateS3UploadForm

DropzoneS3UploadFormView
class s3upload.views.DropzoneS3UploadFormView (**kwargs)
Bases: s3upload.views.S3UploadFormView

form class
alias of DropzoneS3UploadForm

get_success_action_redirect ()

template_name = u’s3upload/dropzone_form.html’

2.2. API 9

django-storages-s3upload Documentation, Release 0.1.6

10 Chapter 2. Contents

Python Module Index

S

s3upload. forms, 6
s3upload.views, 8

11

	Quick Start
	Contents
	Change log
	API

	Python Module Index

